Home
Class 12
MATHS
If tan ((p pi)/4)=cot ((qpi)/4), then pr...

If `tan ((p pi)/4)=cot ((qpi)/4)`, then prove that `p+q=2(2n+1), n in Z`.

Promotional Banner

Similar Questions

Explore conceptually related problems

tan ((pip)/4) = cot((qpi)/4) if :

If tan (cot x) = cot (tan x) , prove that : sin 2x = 4/((2n+1) pi)

If tan(cottheta)= cot(tantheta) , then prove that: pi(2n+1)sin2theta=4

If tan(cottheta)= cot(tantheta) , then prove that: pi(2n+1)sin2theta=4

I : If sin((pi)/(4)cot theta)=cos ((pi)/(4)tan theta) then theta = n pi+pi//4, n in Z II : If tan ((pi)/(2)sin theta)=cot((pi)/(2)cos theta) then sin (theta + (pi)/(4))= pm (1)/(sqrt(2))

If I_(n) = int_((pi)/(4))^((pi)/(2)) cot^(n) x dx , prove that I_(n) + I_(n-2) = (1)/(n-1)

if sin ((pi)/(4) cot theta ) = cos ((pi)/(4) tan theta ), then theta is equal to : a) 2 n pi + (pi)/(4) b) 2n pi pm (pi)/(4) c) 2 n pi - (pi)/(4) d) n pi + (pi)/(4)

If tan(cot x)=cot(tan x), prove that :sin2x=(4)/((2n+1)pi)

If the equation tan (P cot x)=cot (P tan x) has a solution in x in (0, pi)-{pi/2} , then prove that P le pi/4 .