Home
Class 10
MATHS
If the roots of the equation (a^2+b^2...

If the roots of the equation `(a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0` are equal, then `2b=a+c` (b) `b^2=a c` (c) `b=(2a c)/(a+c)` (d) `b=a c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then (a) 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

If the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0 are equal, then prove that 2b=a+c

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal,then a,b,c are in

If the roots of (a^2+b^2 ) x^2 -2b(a+c)x+(b^2 +c^2 ) =0 are equal then a, b, c are in

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal, show that 2//b=1//a+1// c dot

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal, show that 2//b=1//a+1// c dot

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal, show that 2//b=1//a+1//cdot

If the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0 are equal, then prove that 2b=a+c .

If the roots of the equations (b-c) x^(2) + (c-a) x+( a-b) =0 are equal , then prove that 2b=a+c