Home
Class 12
MATHS
If cosx-sinalphacotbetasinx=cosalpha,the...

If `cosx-sinalphacotbetasinx=cosalpha,then tan""(x)/(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is (a) -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) (c) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is (a) -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) (c) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

If cosx=3cosy , then 2tan.(y-x)/(2) is equal to

If sinx+cosx=1/5,0lexlepi, then tan x is equal to

If sinx+cosx=1/5,0lexlepi, then tan x is equal to

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx