Home
Class 12
MATHS
यदि f, g, h तीन फलन R से R पर इस प्रकार ...

यदि f, g, h तीन फलन R से R पर इस प्रकार परिभाषित हैं कि `f(x) =x^2, g(x) = cosx` एवं h(x) = 2x + 3, तो `{ho(gof)} sqrt(2pi)` का मान लिखिये।

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(2), g(x)=tanx, h(x) =logx then [ho(gof)](sqrt(pi//4)) is

Let f : R to R :f (x) = x ^(2) g : R to R : g (x) = x + 5, then gof is:

If f : R to R, g : R to R and h: R to R is such that f (x) =x ^(2) , g (x) = tan x and h (x) = log x, then the value of [ho(gof),if x = (sqrtpi)/(2) will be

If f : R rarr R , f(x) = [x] , g : R rarr R , g(x) = sinx , h : R rarr R , h(x) = 2x , then ho(gof) = ..........

If f: RrarrR,g :RrarrR and h : RrarrR such that f(x)= x^2, g(x) = tan x and h(x)= log x then find [ho (gof)] (x) at x = sqrtpi/2

If f : R to R, g : R to R are defined by f (x) = 2x ^(2) + 3 and g (x) = 3x - 2, then find (gof ) (x)

If f, g : R to R such that f(x) = 3 x^(2) - 2, g (x) = sin (2x) the g of =

If f, g : R rarr R such that : f (x) = x^2 , g (x) = x + 1, then find fog and gof.