Home
Class 12
MATHS
Let O be the origin , and vec(OX),vec(OY...

Let O be the origin , and `vec(OX),vec(OY),vec(OZ) ` be three unit vector in the directions of the sides ` vec(OR) , vec(RP) , vec(PQ) ` respectively, of a triangle PQR, Then , ` |vec(OX) xx vec(OY)|` =

Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. |vec(OX)xxvec(OY)|=

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. |vec(OX)xxvec(OY)|=

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. |vec(OX)xxvec(OY)|=

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. |vec(OX)xxvec(OY)|=

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. if the triangle PQR varies , then the manimum value of cos (P+Q) + cos(Q+R)+ cos (R+P) is

Let O be the origin, and vector OX,OY,OZ be three unit vectors in the directions of the sides vectors QR,RP, PQ respectively, of a triangle PQR. Vector |vec(OX)=vec(OY)|= (A) sin2R (B) sin(P+R) (C) sin(P+Q) (D) sin(Q+R)

It the vectors vec(a), vec(b) and vec(c) form the sides vec(BC), vec(CA) and vec(AB) respectively of a triangle ABC, then write the value of vec(a) xx vec(c) + vec(b) xx vec(c) .

If the vectors vec(a), vec(b), vec(c ) form the sides vec(BC), vec(CA), vec(AB) respectively of triangle ABC then show that vec(a) xx vec(b) = vec(b)xx vec(c ) = vec(c ) xx vec(a) .

If vec(a) , vec(b)and vec(a) xx vec(b) are three unit vectors , find the angles beween the vectors vec(a) and vec(b)

If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to