Home
Class 12
MATHS
Let O be the origin and vec(OX) , vec(O...

Let O be the origin and` vec(OX) , vec(OY) , vec(OZ)` be three unit vector in the directions of the sides `vec(QR) , vec(RP),vec(PQ)` respectively , of a triangle PQR.
`|vec(OX)xxvec(OY)|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the origin , and vec(OX),vec(OY),vec(OZ) be three unit vector in the directions of the sides vec(OR) , vec(RP) , vec(PQ) respectively, of a triangle PQR, Then , |vec(OX) xx vec(OY)| =

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. if the triangle PQR varies , then the manimum value of cos (P+Q) + cos(Q+R)+ cos (R+P) is

Let O be the origin, and vector OX,OY,OZ be three unit vectors in the directions of the sides vectors QR,RP, PQ respectively, of a triangle PQR. Vector |vec(OX)=vec(OY)|= (A) sin2R (B) sin(P+R) (C) sin(P+Q) (D) sin(Q+R)

The unit vector bisecting vec(OY) and vec(OZ) is

The unit vector bisecting vec(OY) and vec(OZ) is

The unit vector bisecting vec(OY) and vec(OZ) is

The unit vector bisecting vec(OY) and vec(OZ) is

The unit vector bisecting vec(OY) and vec(OZ) is

It the vectors vec(a), vec(b) and vec(c) form the sides vec(BC), vec(CA) and vec(AB) respectively of a triangle ABC, then write the value of vec(a) xx vec(c) + vec(b) xx vec(c) .

The resultant of the three displacement vectors vec(OP), vec(PQ) and vec(QR) is