Home
Class 12
MATHS
Let S(n)=sum(k=1)^(4n)(-1)^((k(k+1))/2)k...

Let `S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/2)k^(2)`. Then `S_(n)` can take values

A

`40xx41`

B

`18xx19`

C

`20xx21`

D

`22xx23`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let S_(n)=sum_(k=1)^(4n)(-1)(k(k+1))/(2)k^(2). Then S_(n) can take value (s)1056b.1088c.1120d.1332

If S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/2)k^(2) , then the values of S_(8) is equal to

Knowledge Check

  • sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

    A
    `n(n -1)`
    B
    `n(n + 1)`
    C
    `n^(2)`
    D
    `(n +1 )^(2)
  • Similar Questions

    Explore conceptually related problems

    Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

    Let a(n)=sum_(k=1)^(n)tan^(-1)((2^(k))/(2+4^(k))) , then tan(a(oo)-a(2)) is equal to ________

    Find sum_(k=1)^(n)(tan^(-1)(2k))/(2+k^(2)+k^(4))

    Let S _(n ) = sum _( k =0) ^(n) (1)/( sqrt ( k +1) + sqrt k) What is the value of sum _( n -1) ^( 90) (1)/( S _(n ) + S _( n -1)) ?=

    If for n in N,sum_(k=0)^(2n)(-1)^(k)(2nC_(k))^(2)=A, then find the value of sum_(k=0)^(2n)(-1)^(k)(k-2n)(2nC_(k))^(2)

    Let u_(n)=sum_(k=1)^(n)(k) and v_(n)=sum_(k=1)^(n)(k-0.5) . Then lim_(n rarr oo)(sqrt(u_(n))-sqrt(v_(n))) equals

    If S(n)=sum_(k=1)^(n)(k)/(k^(4)+(1)/(4)), then (221S(10))/(10) is equal to: