Home
Class 11
MATHS
sin3A+sin2A-sinA = 4sinA*cos(A/2)*cos((3...

`sin3A+sin2A-sinA = 4sinA*cos(A/2)*cos((3A)/(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sinA+sin2A+sin4A+sin5A= 4sin3A. cosA/2.cos(3A)/(2)

Prove that, sinA+sin2A+sin4A+sin5A= 4cos((A)/(2))cos((3A)/(2))sin3A .

Prove that sinA+sin2A+sin4A+sin5A=4 cos(A/2)cos((3A)/2)sin3A

Prove that : sin3A+ sin 2A- sinA= 4 sinA cos frac (A)(2) cos frac (3A)(2) .

Prove the following : sin2A+sin2B+sin2(A-B) = 4sinA.cosB.cos(A-B)

(sin3A)/(sinA)-(cos3A)/(cosA)=

If sinA=1/2 find sin2A & cos2A

On simplifying (sin^3A+sin3A)/(sinA)+(cos^3A-cos3A)/(cosA) we get

(sin3A)/(sinA)-(cos3A)/(cosA)=2

Prove that (sinA+sin2A+sin4A+sin5A)/(cosA+cos2A+cos4A+cos5A)=tan3A .