Home
Class 12
MATHS
2x y(dy)/(dx)=x^2+y^2...

`2x y(dy)/(dx)=x^2+y^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation 2x^2y(dy)/(dx)=tan(x^2y^2)-2x y^2, given x=1, y=pi/2, is

The differential equation of all circles passing through the origin and having their centres on the x-axis is (1) x^2=""y^2+""x y(dy)/(dx) (2) x^2=""y^2+"3"x y(dy)/(dx) (3) y^2=x^2""+"2"x y(dy)/(dx) (4) y^2=x^2""-"2"x y(dy)/(dx)

The solution of the differential equation 2x^2y(dy)/(dx)=tan(x^2y^2)-2x y^2, given y(1)=pi/2, is

The solution of the differential equation 2x^2y(dy)/(dx)=tan(x^2y^2)-2x y^2, given y(1)=pi/2, is

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^(2)+2y^(2)+(y^(4))/(x^(2))