Home
Class 12
MATHS
Define and plot (i) y=|x-2|+3|x-3| (ii...

Define and plot
`(i) y=|x-2|+3|x-3|` `(ii) y=||x-2|-3|+|x|`
`(iii)y=|x-1|+|x-4|-2|x+1|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will define and plot the following functions: ### (i) \( y = |x - 2| + 3|x - 3| \) **Step 1: Identify critical points.** The critical points occur where the expressions inside the absolute values equal zero: - \( x - 2 = 0 \) gives \( x = 2 \) - \( x - 3 = 0 \) gives \( x = 3 \) **Step 2: Determine intervals.** The critical points divide the number line into intervals: 1. \( (-\infty, 2) \) 2. \( [2, 3) \) 3. \( [3, \infty) \) **Step 3: Evaluate the function in each interval.** - **Interval 1: \( x < 2 \)** \[ y = -(x - 2) + 3(- (x - 3)) = -x + 2 - 3x + 9 = -4x + 11 \] - **Interval 2: \( 2 \leq x < 3 \)** \[ y = (x - 2) + 3(- (x - 3)) = x - 2 - 3x + 9 = -2x + 7 \] - **Interval 3: \( x \geq 3 \)** \[ y = (x - 2) + 3(x - 3) = x - 2 + 3x - 9 = 4x - 11 \] **Step 4: Plot the function.** - For \( x < 2 \): Use \( y = -4x + 11 \) - For \( 2 \leq x < 3 \): Use \( y = -2x + 7 \) - For \( x \geq 3 \): Use \( y = 4x - 11 \) ### (ii) \( y = ||x - 2| - 3| + |x| \) **Step 1: Identify critical points.** The critical points occur where the expressions inside the absolute values equal zero: 1. \( |x - 2| - 3 = 0 \) gives \( x - 2 = 3 \) or \( x - 2 = -3 \) leading to \( x = 5 \) and \( x = -1 \) 2. \( |x| = 0 \) gives \( x = 0 \) **Step 2: Determine intervals.** The critical points divide the number line into intervals: 1. \( (-\infty, -1) \) 2. \( [-1, 0) \) 3. \( [0, 2) \) 4. \( [2, 5) \) 5. \( [5, \infty) \) **Step 3: Evaluate the function in each interval.** - **Interval 1: \( x < -1 \)** \[ y = -(|x - 2| - 3) + (-x) = -(-x + 2 - 3) - x = x - 1 - x = -1 \] - **Interval 2: \( -1 \leq x < 0 \)** \[ y = -(|x - 2| - 3) + (-x) = -(-x + 2 - 3) - x = x - 1 - x = -1 \] - **Interval 3: \( 0 \leq x < 2 \)** \[ y = -(|x - 2| - 3) + x = -(-x + 2 - 3) + x = x + 1 \] - **Interval 4: \( 2 \leq x < 5 \)** \[ y = -(|x - 2| - 3) + x = -((x - 2) - 3) + x = -x + 5 + x = 5 \] - **Interval 5: \( x \geq 5 \)** \[ y = -(|x - 2| - 3) + x = -((x - 2) - 3) + x = -x + 5 + x = 5 \] **Step 4: Plot the function.** - For \( x < -1 \): \( y = -1 \) - For \( -1 \leq x < 0 \): \( y = -1 \) - For \( 0 \leq x < 2 \): \( y = x + 1 \) - For \( 2 \leq x < 5 \): \( y = 5 \) - For \( x \geq 5 \): \( y = 5 \) ### (iii) \( y = |x - 1| + |x - 4| - 2|x + 1| \) **Step 1: Identify critical points.** The critical points occur where the expressions inside the absolute values equal zero: 1. \( x - 1 = 0 \) gives \( x = 1 \) 2. \( x - 4 = 0 \) gives \( x = 4 \) 3. \( x + 1 = 0 \) gives \( x = -1 \) **Step 2: Determine intervals.** The critical points divide the number line into intervals: 1. \( (-\infty, -1) \) 2. \( [-1, 1) \) 3. \( [1, 4) \) 4. \( [4, \infty) \) **Step 3: Evaluate the function in each interval.** - **Interval 1: \( x < -1 \)** \[ y = -(x - 1) - (x - 4) - 2(-x - 1) = -x + 1 - x + 4 + 2x + 2 = 3 \] - **Interval 2: \( -1 \leq x < 1 \)** \[ y = -(x - 1) - (x - 4) - 2(-x - 1) = -x + 1 - x + 4 + 2x + 2 = 7 - 2x \] - **Interval 3: \( 1 \leq x < 4 \)** \[ y = (x - 1) - (x - 4) - 2(-x - 1) = x - 1 - x + 4 + 2x + 2 = 5 + 2x \] - **Interval 4: \( x \geq 4 \)** \[ y = (x - 1) + (x - 4) - 2(x + 1) = x - 1 + x - 4 - 2x - 2 = -7 \] **Step 4: Plot the function.** - For \( x < -1 \): \( y = 3 \) - For \( -1 \leq x < 1 \): \( y = 7 - 2x \) - For \( 1 \leq x < 4 \): \( y = 5 + 2x \) - For \( x \geq 4 \): \( y = -7 \)
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |7 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos

Similar Questions

Explore conceptually related problems

define plot y=|x-2|+3|x-3|

define and plot y=|x-1|+|x-4|-2|x+1|

Draw the labled graph of following (i) y = |7-2x| , (ii) y = |x-1|-|3x-2| , (iii) y= |x-1|+|x-4| + |x-7|

Draw the graph of followings (i) y=-|x + 2| (ii) y=||x-1|-2| (iii) y = |x + 2| + |x - 3| (iv) |y| + x = -1

If graph of y=(x-1)(x-2) is then draw the graph of the following (i) y=|(x-1)(x-2)| (ii) |y|=(x-1)(x-2) (iii) y=(|x|-1)(|x|-2) (iv) |(|x|-1)(|x|-2)| (v) |y|=|(|x|-1)(|x|-2)|

Draw the graphs of (i) y=x^(2)(x-1)|x-2| (ii) y=x^(3)(x-1)|x-2|

Draw the following curves: (i)y=||x^(2)|-2x-3| (ii) |x|+|y|=1 (iii) |y|=|log|x||( iv )y=sqrt(2-x^(2))

Differentiate with respect to X (i) y=xlnx " " (ii) y=x^(2)e^(x) " " (iii) y=(sin x)/(x) " " (iv) y=(3x^(2)+2sqrt(x))/(x)

Find x and y if: (i) (x + 1,y-2) = (3,1) (ii) (x + 2,4)= (5,2x+y)

Find (dy)/(dx) , when (i) y= sqrtx (ii) y= x^(5) + x^(4) + 7 (iii) y=x^(2)+ 4x^(-1//2)- 3x^(-2)

RESONANCE-FUNDAMENTAL OF MATHEMATICS-Exercise
  1. Find the number of positive integral value of x satisfying the inequal...

    Text Solution

    |

  2. If 1lt(x-1)/(x+2)lt7 then find the range of (i) x (ii) x^(2) (iii) (...

    Text Solution

    |

  3. Define and plot (i) y=|x-2|+3|x-3| (ii) y=||x-2|-3|+|x| (iii)y=|x-...

    Text Solution

    |

  4. Solve for x (i) |x+1|=4x+3 (ii) |x+1|=|x+3| (iii) 7|x-2|-|x-7|=5...

    Text Solution

    |

  5. Solve for x (i) 2^(|x+1|)+2^(|x|)=6 and x in I (ii) x^(2)+x+1+|x-3...

    Text Solution

    |

  6. Solve the following in equalities (i) |x+7| gt 5 (ii) |x+3| lt 10 ...

    Text Solution

    |

  7. Find the number of solution of the following equation (i) |||x-1|-2|...

    Text Solution

    |

  8. If graph of y=(x-1)(x-2) is then draw the graph of the following ...

    Text Solution

    |

  9. Solve the following inequlities (i) sqrt(x-1) lt x-3 (ii) sqrt(x-3) ...

    Text Solution

    |

  10. Find the value of (i) (log(10)5)(log(10)20)+(log(10)2)^(2) (ii) root3...

    Text Solution

    |

  11. Let log(10)2=a and log(10)3=b determine the following in term of a and...

    Text Solution

    |

  12. Solve the following equations : (i) log(x)(4x-3)=2 (ii) log2)(x-1)+log...

    Text Solution

    |

  13. Solve the following equations (i) (log(2)(9-2^(x)))/(3-x)=1 (ii) x^...

    Text Solution

    |

  14. Solve the following inequalities (i) log(5)(3x-1) lt 1 (ii) (log(.5)...

    Text Solution

    |

  15. Solve the following inequalities (i) |log(3)x|-log(3)x-3 lt 0 (ii)(x...

    Text Solution

    |

  16. 1 5^x-25. 3^x-9. 5^x+225 >= 0

    Text Solution

    |

  17. Solve for x (where [*] denotes greatest integer function and {*} repre...

    Text Solution

    |

  18. Solve the following equations (where [*] dentoes greatest integer fu...

    Text Solution

    |

  19. Solve the following equations (where [*] denotes greatest integer func...

    Text Solution

    |

  20. Solve the following inequalities (where [*] denotes greatest integer f...

    Text Solution

    |