Home
Class 12
MATHS
If f(x)={x}+{x+[(x)/(1+x^(2))]}+{x+[(x)/...

If `f(x)={x}+{x+[(x)/(1+x^(2))]}+{x+[(x)/(1+2x^(2))]}+{x+[(x)/(1+3x^(2))]}.......+{x+[(x)/(1+99x^(2))]}`, then values of `[f(sqrt(3))]` is where `[*]` denotes greatest integer function and `{*}` represent fractional part function)

A

`5050`

B

`4950`

C

`17`

D

`73`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \sum_{k=0}^{99} \left( x + \frac{x}{1 + kx^2} \right) \] We will substitute \( x = \sqrt{3} \) into the function and simplify it step by step. ### Step 1: Substitute \( x = \sqrt{3} \) Substituting \( x = \sqrt{3} \) into the function gives: \[ f(\sqrt{3}) = \sum_{k=0}^{99} \left( \sqrt{3} + \frac{\sqrt{3}}{1 + k(\sqrt{3})^2} \right) \] ### Step 2: Simplify the expression inside the summation Since \( (\sqrt{3})^2 = 3 \), we can rewrite the term \( 1 + k(\sqrt{3})^2 \) as \( 1 + 3k \). Thus, we have: \[ f(\sqrt{3}) = \sum_{k=0}^{99} \left( \sqrt{3} + \frac{\sqrt{3}}{1 + 3k} \right) \] ### Step 3: Break the summation into two parts We can separate the summation into two distinct parts: \[ f(\sqrt{3}) = \sum_{k=0}^{99} \sqrt{3} + \sum_{k=0}^{99} \frac{\sqrt{3}}{1 + 3k} \] ### Step 4: Calculate the first summation The first summation is straightforward: \[ \sum_{k=0}^{99} \sqrt{3} = 100\sqrt{3} \] ### Step 5: Calculate the second summation Now we need to evaluate the second summation: \[ \sum_{k=0}^{99} \frac{\sqrt{3}}{1 + 3k} \] This can be approximated by recognizing that as \( k \) increases, the term \( 1 + 3k \) grows larger, making the fraction smaller. ### Step 6: Estimate the second summation To estimate this summation, we can calculate the first few terms and observe the pattern. The first few terms are: - For \( k=0 \): \( \frac{\sqrt{3}}{1} = \sqrt{3} \) - For \( k=1 \): \( \frac{\sqrt{3}}{4} \) - For \( k=2 \): \( \frac{\sqrt{3}}{7} \) - For \( k=3 \): \( \frac{\sqrt{3}}{10} \) As \( k \) increases, the terms decrease. We can approximate the sum using integrals or numerical methods, but for simplicity, we can note that the sum will be significantly smaller than the first part. ### Step 7: Combine the results Let’s denote the second summation as \( S \): \[ S = \sum_{k=0}^{99} \frac{\sqrt{3}}{1 + 3k} \] The total function evaluates to: \[ f(\sqrt{3}) \approx 100\sqrt{3} + S \] ### Step 8: Calculate the approximate value Using \( \sqrt{3} \approx 1.732 \): \[ 100\sqrt{3} \approx 173.2 \] Assuming \( S \) is small, we can estimate \( f(\sqrt{3}) \approx 173.2 + S \). ### Step 9: Apply the greatest integer function Now, we need to find \( [f(\sqrt{3})] \), where \( [*] \) denotes the greatest integer function. Since \( S \) is small, we can estimate: \[ [f(\sqrt{3})] \approx [173.2 + S] \approx 173 \] ### Final Answer Thus, the value of \( [f(\sqrt{3})] \) is: \[ \boxed{173} \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |7 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos

Similar Questions

Explore conceptually related problems

f(x) = [x-1] + {x)^{x}, x in (1,3), then f^-1(x) is- (where [.] denotes greatest integer function and (J denotes fractional part function)

Consider the function f(x) = {x+2} [cos 2x] (where [.] denotes greatest integer function & {.} denotes fractional part function.)

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=sin((pi)/(3)[x]-x^(2)) then the value of f(sqrt((pi)/(3))) is (where [x] denotes the greatest integer function )

Solve (1)/(x)+(1)/([2x])={x}+(1)/(3) where [.] denotes the greatest integers function and {.} denotes fractional part function.

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

The function f (x)=[sqrt(1-sqrt(1-x ^(2)))], (where [.] denotes greatest integer function):

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

RESONANCE-FUNDAMENTAL OF MATHEMATICS-Exercise
  1. The solution set of the inequality |9^x-3^(x+1) + 15| < 2.9^x - 3^x i...

    Text Solution

    |

  2. The complete set of values of x satisfying the equation x^2. 2^(x+1)+...

    Text Solution

    |

  3. If f(x)={x}+{x+[(x)/(1+x^(2))]}+{x+[(x)/(1+2x^(2))]}+{x+[(x)/(1+3x^(2)...

    Text Solution

    |

  4. The number of solution of the equation sgn({x})=|1-x| is/are (where {*...

    Text Solution

    |

  5. The complete set of solution of Inequality (x^2-5 x+6 sgn(x))/(x sgn(x...

    Text Solution

    |

  6. (1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3...

    Text Solution

    |

  7. If (m + 2) sintheta + (2m-1) costheta = 2m+1, then

    Text Solution

    |

  8. Let 0le theta le pi/2 x=Xcos theta + Ysin theta y=Xsin theta - Y cos t...

    Text Solution

    |

  9. Let (1+tan1^(ul0))(1+tan2^(ul0))......(1+tan45^(ul0))=2^(k) then k equ...

    Text Solution

    |

  10. The number of solution of 2cosx=|sinx| where x in [0.4pi] is/are

    Text Solution

    |

  11. if the equation sin (pi x^2) - sin(pi x^2 + 2 pi x) = 0 is solved for ...

    Text Solution

    |

  12. In (0,6pi), the number of solutions of the equation tantheta+tan2theta...

    Text Solution

    |

  13. If 2tan^2x-5secx=1 for exactly seven distinct value of x in [0,(npi)/2...

    Text Solution

    |

  14. The number of integral values of a for which the equation cos2x+a sin ...

    Text Solution

    |

  15. If the arithmetic mean of the roots of the equation 4cos^(3)x-4cos^(2)...

    Text Solution

    |

  16. Number of solution of sinx cosx-3cosx+4sinx-13 gt 0 in [0,2pi] is equa...

    Text Solution

    |

  17. The solution of sqrt(5-2sinx) ge 6 sinx-1 is

    Text Solution

    |

  18. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  19. for 0ltthetaltpi/2 the solution(s) of sum(m=1)^6c o s e c(theta+((m-...

    Text Solution

    |

  20. The maximum value of the expression (1)/(sin^(2)theta+3sinthetacosthet...

    Text Solution

    |