Home
Class 11
MATHS
sin(2^t)cos(2^x)=1/4(2^x+2^(-x))"i s"...

`sin(2^t)cos(2^x)=1/4(2^x+2^(-x))"i s"`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx

For x in R and a continuous function f(x) , let I_(1)int_(sin^(2)t)^(1+cos^(2)t) xf{x(2-x)} dx and I_(2) I_(1)int_(sin^(2)t)^(1+cos^(2)t) f(x(2-x))dx. Then, (I_(1))/(I_(2)) =

The value of (cos^(4)x+cos^(2)x sin^(2) x + sin^(2)x)/(cos^(2)x+ sin^(2) x cos^(2) x + sin^(4)x) is ____________

Solve the equation 4^(sin2x+2cos^(2)x)+4^(1-sin2x+2sin^(2)x)=65

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

For x epsilonR , and a continuous function f let I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx and I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx . Then (I_(1))/(I_(2)) is