Home
Class 12
MATHS
If intf(x)sinxcosx dx=1/(2(b^2-a^2))log...

If `intf(x)sinxcosx dx=1/(2(b^2-a^2))logf(x)+C`, then `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to

If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

If intf(x)sinxcosxdx=(1)/(2(b^2-a^2))logf(x)+c , where c is the constant of integration, then f(x)=

If intf (x)sinx cosx dx=(1)/(2(a^(2)-b^(2)))log|f(x)|+C ,then f (x)=

If f(x)sinx.cosxdx=(1)/(2(b^(2)-a^(2)))logf(x)+c , where c is the constant of integration, then f(x)=

If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c, then f(x) can be

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be