Home
Class 11
MATHS
If bar a=bar i+2 bar j+bar k, bar b=2 ba...

If `bar a=bar i+2 bar j+bar k`, `bar b=2 bar j+bar k-bar i`, then component of `bar a` perpendicular to `bar b` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)=7i+2j+k,bar(b)=2j+k-i, then component of bar(a) perpendicular to bar(b) is :

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

If bar(a)=bar(i)+bar(j)+bar(k) , bar(b)=bar(i)+2bar(j)+3bar(k) then a unit vector perpendicular to both vectors (bar(a)+bar(b)) and (bar(a)-bar(b)) is

If bar(a)=2bar(i)+bar(j)+2bar(k),bar(b)=5bar(i)-3bar(j)+bar(k), then the length of the component vector of b perpendicular to a is

bar (a) = 2bar (i) + 3bar (j) -bar (k), bar (b) = bar (i) + 2bar (j) -4bar (k), bar (c) = bar (i) + bar (j) + bar (k), bar (d) = bar (i) -bar (j) -bar (k) then

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .

If bar(a) = bar(i) - bar(j)-bar(k), bar(b) = 2bar(i) - 3bar(j) + bar(k) then find the projection vector of bar(b) on bar(a) and its magnitude.

If bar(a) = bar(i) + bar(j)+bar(k), bar(b) = 2bar(i) + 3bar(j) + bar(k) then find the projection vector of bar(b) on bar(a) and its magnitude.

bar (a) = bar (a) + bar (j) + bar (k), bar (b) = bar (i) + bar (j), bar (c) = bar (i) and (bar (a) xxbar (b)) xxbar (c) = lambdabar (a) + mubar (b), then lambda + mu =