Home
Class 10
MATHS
1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2...

`1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N`

Promotional Banner

Similar Questions

Explore conceptually related problems

1^(3)+2^(3)+3^(3)+...+n^(3)=n^(2)((n+1)^(2))/(4)

Use mathematical induction to prove that statement 1^(3) + 2^(3) + 3^(3) + . . . + n^(3) = (n^(2) (n + 1)^(2))/( 4) , AA n in N

1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove by PMI that 1.2+2.3+3.4+....+n(n+1)=((n)(n+1)(n+2))/(3),AA n in N

S_(n) = 1^(3) + 2^(3) + 3^(3) + …... + n^(3) and T_(n) = 1+ 2 + 3+ 4…...n

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.......+(1)/(n(n+1))=(n)/(n+1),n in N is true for