Home
Class 11
MATHS
If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x...

If `f(x)=(2^x+2^(-x))/2` , then `f(x+y)f(x-y)` is equals to (a) `1/2{f(2x)+f(2y)}` (b) `1/2{f(2x)-f(2y)}` (c) `1/4{f(2x)+f(2y)}` `1/4{f(2x)-f(2y)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(2^(x)+2^(-x))/(2) , then f(x+y).f(x-y) is equal to

If f(x)=(2^x+2^-x)/2 , then f(x+y) f(x-y) is equal to:

If f(x)=(2^(x)+2^(-x))/(2), then f(x+y)f(x-y) is equals to (1)/(2){f(2x)+f(2y)}(b)(1)/(2){f(2x)-f(2y)}(c)(1)/(4){f(2x)+f(2y)}(1)/(4){f(2x)-f(2y)}

If y=f(x)=(2x-1)/(x-2), then f(y)=

If f(x) = cos(log x) , then f(x^(2)) . f(y^(2)) -1/2[f(x^(2)y^(2)) +f(x^(2)/y^(2))]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x,y)=2x^(2)-xy+2y^(2) then find f_x at the point (1,2)

If f(x,y)=2x^(2)-xy+2y^(2) then find f_x at the point (1,2)

If f(x)f(y) + 2 = f(x) + f(y) + f(xy) and f(1) = 2, f'(1) = 2, then find f(x).