Home
Class 11
MATHS
(a^2-b^2)/(a-b)-(a^3-b^3)/(a^2-b^2)...

`(a^2-b^2)/(a-b)-(a^3-b^3)/(a^2-b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(2a+3b)(a-b)=2a^(2)-3b^(2)

Suppose a,b are two non zero numbers. Let Delta=|(2,a+b,a^(2)+b^(2)),(a+b,a^(2)+b^(2),a^(3)+b^(3)),(a^(2)+b^(2),a^(3)+b^(3),a^(4)+b^(4))| then Delta is equal to

Formulae for the sum and differences of cubes (i)a^(3)+b^(3)=(a+b)(a^(2)-ab+b^(2))(ii)a^(3)-b^(3)=(a-b)(a^(2)+ab+b^(2))

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

Simplify: ((a^2-b^2)+(b^2-c^2)^3+(c^2-a^2)^3)/((a-b)^3+(b-c)^3+(c-a)^3)

The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is