Home
Class 11
PHYSICS
Given that y=x^(2)+4x^(-(1)/(2))-3x^(-2)...

Given that `y=x^(2)+4x^(-(1)/(2))-3x^(-2),` find `(dy)/(dx)`.

A

`2x-2x^(-(3)/(2))+6x^(-3)`

B

`-2x-2x^(-(3)/(2))+6x^(-3)`

C

`2x-2x^(-(1)/(2))+6x^(-3)`

D

`=-2x-2x^(-(3)/(2))+6x^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = x^2 + 4x^{-\frac{1}{2}} - 3x^{-2} \), we will differentiate each term separately using the power rule. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = x^2 + 4x^{-\frac{1}{2}} - 3x^{-2} \] 2. **Differentiate the first term \( x^2 \)**: Using the power rule \( \frac{d}{dx}(x^n) = nx^{n-1} \): \[ \frac{d}{dx}(x^2) = 2x^{2-1} = 2x \] 3. **Differentiate the second term \( 4x^{-\frac{1}{2}} \)**: Again applying the power rule: \[ \frac{d}{dx}(4x^{-\frac{1}{2}}) = 4 \cdot \left(-\frac{1}{2}\right)x^{-\frac{1}{2}-1} = -2x^{-\frac{3}{2}} \] 4. **Differentiate the third term \( -3x^{-2} \)**: Applying the power rule: \[ \frac{d}{dx}(-3x^{-2}) = -3 \cdot (-2)x^{-2-1} = 6x^{-3} \] 5. **Combine all the derivatives**: Now, we can combine all the differentiated terms: \[ \frac{dy}{dx} = 2x - 2x^{-\frac{3}{2}} + 6x^{-3} \] 6. **Final expression**: Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 2x - 2x^{-\frac{3}{2}} + 6x^{-3} \]

To find the derivative \( \frac{dy}{dx} \) for the function \( y = x^2 + 4x^{-\frac{1}{2}} - 3x^{-2} \), we will differentiate each term separately using the power rule. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = x^2 + 4x^{-\frac{1}{2}} - 3x^{-2} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|3 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

If y=(x^(3)+x^(2)+x)/(1+x^(2)), find (dy)/(dx)

y=(4x^(3)-5x^(2)+1)^(4), Find (dy)/(dx)

y=x^(2)+(1)/(x^(2)) . Find (dy)/(dx)

y=(x-1)/((x-2)(x-3)) , find dy/dx

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) find (dy)/(dx) =

y=(1+x^2)/(1-x^2) , find dy/dx

Given that y=x^(2) , find (dy)/(dx) .

Given that y=(x^(2)+1)/(x-2) , find (dy)/(dx)

If x^(2)+2xy+y^(3)=4, find (dy)/(dx)

quad y=x^(5)+x^(4)+x^(3)+x^(2)+x+1. Find ((dy)/(dx))