Home
Class 11
PHYSICS
Given that y=(3x^(2)+7)(6x+3). Find (dy)...

Given that `y=(3x^(2)+7)(6x+3).` Find `(dy)/(dx).`
Note : This problem can be solved by using Theorm 5.
Here `u=3x^(2)+7 and v=6x+3.`

Text Solution

AI Generated Solution

To find the derivative \(\frac{dy}{dx}\) of the function \(y = (3x^2 + 7)(6x + 3)\), we can use the product rule of differentiation. The product rule states that if \(y = u \cdot v\), then: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] where \(u = 3x^2 + 7\) and \(v = 6x + 3\). ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|3 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

y=4+5x7x^(3) . Find (dy)/(dx) :

If y=(2x+3)^((3x-5)) , find (dy)/(dx) .

y=(x-7)/((x-2)(x-3)) find dy/dx

If y=2x^(3)+3x^(2)+6x+1 , then (dy)/(dx) will be -

y=(6x^(4) - 5x^(3) + 2x + 3)^(6) find (dy)/(dx)

If y=(2x^(9))/(3)-(5)/(7)x^(7)+6x^(3)-x find (dy)/(dx)atx=1

y= tan^(-1)((5-x)/(6x^(2)-5x-3)) find dy/dx

y= tan^(-1)((5x+1)/(3-x-6x^(2))) find dy/dx

Find (dy)/(dx) if y = 5x^(4) + 6x^(3//2) + 9x .

((5x^(2) + 6x+ 7))/((2x^(2) + 3x +4))