Home
Class 11
PHYSICS
Given that y=(x^(2)+1)/(x-2), find (dy)/...

Given that `y=(x^(2)+1)/(x-2)`, find `(dy)/(dx)`

Text Solution

AI Generated Solution

To find the derivative of the function \( y = \frac{x^2 + 1}{x - 2} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form of \( \frac{u}{v} \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = x^2 + 1 \) and \( v = x - 2 \). ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|3 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

y=(1)/(x^(2)) , find (dy)/(dx)

y=(x^(2)+1)tan^(-l)x find (dy)/(dx)

If y=[(x^(2)+1)/(x+1)] , then find (dy)/(dx) .

Given that y=x^(2)+4x^(-(1)/(2))-3x^(-2), find (dy)/(dx) .

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

Given that y=x^(2) , find (dy)/(dx) .

y=(1+x^2)/(1-x^2) , find dy/dx

y=(x-1)/((x-2)(x-3)) , find dy/dx

If y=(x^2+1/x^2)^3 , find dy/dx