Home
Class 11
PHYSICS
Given that y=e^(tanx), find (dy)/(dx)....

Given that `y=e^(tanx)`, find `(dy)/(dx)`.

A

`e^(tanx)sec^(2)x`

B

`e^(x)sec^(2)x`

C

`e^(tanx)`

D

`e^(tanx)secx`

Text Solution

Verified by Experts

The correct Answer is:
A

Using formula (vi)
`(dy)/(dx)=(d)/(dx)[e^(tanx)]=e^(tanx)(d)/(dx)(tanx)`
`=e^(tanx)sec^(2)x`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|3 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

If xy=e^(x-y), find (dy)/(dx)

Given that y=x^(2) , find (dy)/(dx) .

If y=e^(x^(x)) , find (dy)/(dx)

If y=e^(x^(3)) find (dy)/(dx)

y=x^(tanx) then (dy)/(dx) is

If y=e^(-x^(2)), then find (dy)/(dx) .

y=e^x find dy/dx

If xy=e^((x-y)), then find (dy)/(dx)

If y=e^(sqrt(cotx)) , find (dy)/(dx) .

If y=sqrt(e^(sqrtx)) , find (dy)/(dx) .