Home
Class 11
PHYSICS
Find int(x^(6)+x^(-6))dx...

Find `int(x^(6)+x^(-6))dx`

A

`(x^(6))/(7)-(x^(-5))/(5)`

B

`(x^(7))/(7)-(x^(-5))/(5)`

C

`(x^(7))/(7)-(x^(-5))`

D

`(x^(6))/(7)-(x^(-5))/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x^6 + x^{-6}) \, dx \), we can break it down into two separate integrals: 1. **Separate the integral:** \[ \int (x^6 + x^{-6}) \, dx = \int x^6 \, dx + \int x^{-6} \, dx \] 2. **Integrate \( x^6 \):** The formula for integrating \( x^n \) is: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] Applying this for \( n = 6 \): \[ \int x^6 \, dx = \frac{x^{6+1}}{6+1} + C = \frac{x^7}{7} + C_1 \] 3. **Integrate \( x^{-6} \):** Similarly, we apply the same formula for \( n = -6 \): \[ \int x^{-6} \, dx = \frac{x^{-6+1}}{-6+1} + C = \frac{x^{-5}}{-5} + C_2 = -\frac{x^{-5}}{5} + C_2 \] 4. **Combine the results:** Now, we combine the results of both integrals: \[ \int (x^6 + x^{-6}) \, dx = \frac{x^7}{7} - \frac{x^{-5}}{5} + C \] 5. **Final answer:** Thus, the final result of the integral is: \[ \int (x^6 + x^{-6}) \, dx = \frac{x^7}{7} - \frac{1}{5x^5} + C \]

To solve the integral \( \int (x^6 + x^{-6}) \, dx \), we can break it down into two separate integrals: 1. **Separate the integral:** \[ \int (x^6 + x^{-6}) \, dx = \int x^6 \, dx + \int x^{-6} \, dx \] 2. **Integrate \( x^6 \):** ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|3 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/(1+x^(6)) dx

find int((6x))/(x^(2)+4)dx

Evaluate: int(1)/(x^(4)+x^(6))dx

Evaluate: int(x^(4)+1)/(x^(6)+1)dx

Evaluate int(1+x^(6))/(1+x^(2))dx

Evaluate: (i) int(1)/(sqrt(x))(1+(1)/(x))dx (ii) int(x^(6)+1)/(x^(2)+1)dx

int(cos^(6)x+sin^(6)x)dx

int6x e^(x^(2))dx=

Evaluate: int(x^(2))/(x^(6)-a^(6))dx

Evaluate the following : int_(5)^(6)e^(x)dx