Home
Class 11
PHYSICS
Integrate the following : int(3)^(6)(u...

Integrate the following :
`int_(3)^(6)(u+at)dt` where u and a are constants.

A

`3u+(27)a.`

B

`3u+(27)/(2)a.`

C

`3u+(25)/(2)a.`

D

`9u+(27)/(2)a.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{3}^{6} (u + at) \, dt \), where \( u \) and \( a \) are constants, we can follow these steps: ### Step 1: Separate the Integral We can separate the integral into two parts: \[ \int_{3}^{6} (u + at) \, dt = \int_{3}^{6} u \, dt + \int_{3}^{6} at \, dt \] ### Step 2: Integrate the First Part Since \( u \) is a constant, the integral of \( u \) with respect to \( t \) is: \[ \int_{3}^{6} u \, dt = u \cdot \int_{3}^{6} dt = u \cdot [t]_{3}^{6} = u \cdot (6 - 3) = 3u \] ### Step 3: Integrate the Second Part Now, we integrate \( at \): \[ \int_{3}^{6} at \, dt = a \cdot \int_{3}^{6} t \, dt = a \cdot \left[ \frac{t^2}{2} \right]_{3}^{6} \] Calculating the definite integral: \[ = a \cdot \left( \frac{6^2}{2} - \frac{3^2}{2} \right) = a \cdot \left( \frac{36}{2} - \frac{9}{2} \right) = a \cdot \left( \frac{36 - 9}{2} \right) = a \cdot \frac{27}{2} \] ### Step 4: Combine the Results Now, we combine the results from Step 2 and Step 3: \[ \int_{3}^{6} (u + at) \, dt = 3u + a \cdot \frac{27}{2} \] ### Final Answer Thus, the final result of the definite integral is: \[ \int_{3}^{6} (u + at) \, dt = 3u + \frac{27a}{2} \]

To solve the definite integral \( \int_{3}^{6} (u + at) \, dt \), where \( u \) and \( a \) are constants, we can follow these steps: ### Step 1: Separate the Integral We can separate the integral into two parts: \[ \int_{3}^{6} (u + at) \, dt = \int_{3}^{6} u \, dt + \int_{3}^{6} at \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|3 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (2)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Integrate the following : int(dt)/((6t-1))

Integrate the following: int(2t-4)^(-4)dt

Integrate the following int(2t-4)^(-4)dt=

Integrate the following : int(sin4t+2t)dt

Obtain the following integrals : int6^(t)dt

Evaluate int^t _0 A sin omega dt where A and omega are constants.

Evaluate the following integrals : int x^(-3//2)dx (a and b are constant)

Integrate the following : (i) int(t-(1)/(t))^(2)" dt " (ii) intsin(10t-50)" dt " (iii) inte^((100t+6))" dt "

int_(2)^(3)u sqrt(5-u)du

Integrate the following function (a) int_(o)^(2) 2t dt (b) int _(pi//6)^(pi//3) sin x dx (c) int _(4)^(10)(dx)/(x) (d) int _(o)^(pi) cos x dx (e) int _(1) ^(2)(2t -4) dt