Home
Class 11
PHYSICS
Given that x^(2)+y^(2)=9 show that (dy...

Given that `x^(2)+y^(2)=9`
show that `(dy)/(dx).(dx)/(dy)=1.`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (6)|16 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (7)|6 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (4)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=1" verify that "(dy)/(dx).(dx)/(dy)=1

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

If y=cot x show that (d^(2)y)/(dx^(2))+2y(dy)/(dx)=0

"If "y=e^(x+y)" ,show that "(dy)/(dx)=(y)/(1-y)

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If log(xy)x^(2)+y^(2)," then: "((dy)/(dx))((dx)/(dy))=

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0, find (dy)/(dx) and (dx)/(dy) .Also,show that (dy)/(dx)(dx)/(dy)=1

Given that y=(x^(2)+1)/(x-2) , find (dy)/(dx)

If Y = kx, then show that (dy)/(dx) = (y)/(x)