Home
Class 11
PHYSICS
Given that y=6t and x=9t^(2). Find (dy)/...

Given that `y=6t and x=9t^(2)`. Find `(dy)/(dx).`

Text Solution

AI Generated Solution

To find \( \frac{dy}{dx} \) given that \( y = 6t \) and \( x = 9t^2 \), we can use the chain rule of differentiation. Here are the steps to solve the problem: ### Step 1: Differentiate \( y \) with respect to \( t \) Given \( y = 6t \), we differentiate \( y \) with respect to \( t \): \[ \frac{dy}{dt} = 6 \] ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (6)|16 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (7)|6 Videos
  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (4)|7 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

If x=t^(2),y=t^(3) find (dy)/(dx)

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If x = ct and y=c/t , find (dy)/(dx) at t=2.

If x=te^(t) and y=1+log t, find (dy)/(dx)

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If a gt0, x=(t+(1)/(t))^(a) and y=a^((t+(1)/(t))) , find (dy)/(dx).