Home
Class 11
PHYSICS
Evaluate the following : int(0)^(oo)x^...

Evaluate the following :
`int_(0)^(oo)x^(-1//2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\infty} x^{-\frac{1}{2}} \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\infty} x^{-\frac{1}{2}} \, dx \] ### Step 2: Find the antiderivative The integral of \( x^n \) is given by: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{(for } n \neq -1\text{)} \] In our case, \( n = -\frac{1}{2} \). Therefore, we compute: \[ \int x^{-\frac{1}{2}} \, dx = \frac{x^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} = 2x^{\frac{1}{2}} + C \] ### Step 3: Evaluate the definite integral Now we evaluate the definite integral from \( 0 \) to \( \infty \): \[ I = \left[ 2x^{\frac{1}{2}} \right]_{0}^{\infty} \] ### Step 4: Calculate the limits 1. Evaluate at the upper limit \( x = \infty \): \[ 2(\infty)^{\frac{1}{2}} = 2 \cdot \infty = \infty \] 2. Evaluate at the lower limit \( x = 0 \): \[ 2(0)^{\frac{1}{2}} = 2 \cdot 0 = 0 \] ### Step 5: Combine the results Now, we combine the results from the limits: \[ I = \infty - 0 = \infty \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\infty} x^{-\frac{1}{2}} \, dx = \infty \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(1)^(oo)x^(-(3/2))dx

Evaluate the following : int_(0)^(a)x^(2)sqrt(1-x)dx

Evaluate the following : int_(0)^(1)(cos^(-1)x)^(2)dx

int_(0)^(oo)(1)/(x+a)dx

Evaluate the following integral: int_(0)^(1)|2x-1|dx

int_(0)^(oo)(1)/(3+x^(2))dx