Home
Class 11
PHYSICS
Evaluate the following : int(5)^(6)e^(...

Evaluate the following :
`int_(5)^(6)e^(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_{5}^{6} e^{x} \, dx\), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the definite integral of the function \(e^x\) from \(x = 5\) to \(x = 6\). ### Step 2: Find the antiderivative The antiderivative of \(e^x\) is \(e^x\). This means: \[ \int e^{x} \, dx = e^{x} + C \] where \(C\) is the constant of integration. ### Step 3: Apply the limits of integration Now we will evaluate the definite integral using the limits from 5 to 6: \[ \int_{5}^{6} e^{x} \, dx = \left[ e^{x} \right]_{5}^{6} \] This means we will calculate \(e^{6}\) and \(e^{5}\) and then find their difference. ### Step 4: Calculate the values at the limits Now we compute: \[ \left[ e^{x} \right]_{5}^{6} = e^{6} - e^{5} \] ### Step 5: Final result Thus, the value of the integral is: \[ e^{6} - e^{5} \] ### Summary of the solution The evaluated integral \(\int_{5}^{6} e^{x} \, dx\) is: \[ e^{6} - e^{5} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(1)^(e)(logx)dx

Evaluate the following : int_(1)^(2)(dx)/(x^(2)+6x+5)

Evaluate the following integral: int_(-6)^6|x+2|dx

Evaluate the following integrals: int_-5^0f(x)dx ,w h e r ef(x)=|x|+|x+2|+|x+5|

EXAMPLE 3 -Evaluate the following integrals: (i) int(e^(x)-1)/(e^(x)+1)dx(ii)int(5^(x)+1)/(5^(x)-1)dx

Evaluate the following integrals: int_(-1)^(1)e^(|x|)dx

Evaluate the following integrals: int (e^(x))/(a^(x))dx

Evaluate the following integrals: int(x^(e)+e^(x)+e^(e))dx

Evaluate the following integral: int_(-2)^2x e^(|x|)dx

If a>0 and a!=1 evaluate the following integrals: int e^(x)a^(x)dx (ii) int2^((log)_(e)x)dx