Home
Class 11
PHYSICS
Evaluate the following : int(-pi//2)^(...

Evaluate the following :
`int_(-pi//2)^(pi//2) cos theta d theta`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\theta, \] we can follow these steps: ### Step 1: Identify the properties of the function The function \(\cos \theta\) is an even function. This means that \(\cos(-\theta) = \cos(\theta)\). ### Step 2: Use the property of even functions For an even function, the integral from \(-a\) to \(a\) can be simplified as follows: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx. \] In our case, we can rewrite the integral as: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \cos \theta \, d\theta. \] ### Step 3: Evaluate the integral from 0 to \(\frac{\pi}{2}\) Now we need to compute the integral: \[ \int_{0}^{\frac{\pi}{2}} \cos \theta \, d\theta. \] The integral of \(\cos \theta\) is \(\sin \theta\). Therefore, we have: \[ \int \cos \theta \, d\theta = \sin \theta. \] ### Step 4: Apply the limits Now we apply the limits from \(0\) to \(\frac{\pi}{2}\): \[ \int_{0}^{\frac{\pi}{2}} \cos \theta \, d\theta = \sin \left( \frac{\pi}{2} \right) - \sin(0). \] Calculating this gives: \[ \sin \left( \frac{\pi}{2} \right) = 1 \quad \text{and} \quad \sin(0) = 0. \] Thus, \[ \int_{0}^{\frac{\pi}{2}} \cos \theta \, d\theta = 1 - 0 = 1. \] ### Step 5: Multiply by 2 Now, substituting back into our equation for \(I\): \[ I = 2 \cdot 1 = 2. \] ### Final Result The value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\theta = 2. \] ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//2)sin theta d theta

int_(0) ^(pi//2) cos^(2) theta d theta =

int_(0)^(pi//8) cos^(3)4 theta d theta=

Find the value of the following: int_(pi/4)^(pi/2) cosec^2thetacostheta d theta

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(3)theta d theta

Evaluate the following integrals: int_(0)^( pi/6)cos^(-3)2 theta sin2 theta d theta

Find int_(0)^(pi//2)(1-cos theta)^(1//2)d theta