Home
Class 11
PHYSICS
Find the value of int(u)^(v)Mvdv...

Find the value of `int_(u)^(v)Mvdv`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{u}^{v} M v \, dv \), we can follow these steps: ### Step 1: Identify the integral We need to evaluate the integral: \[ \int_{u}^{v} M v \, dv \] where \( M \) is a constant (mass in this context). ### Step 2: Factor out the constant Since \( M \) is a constant, we can factor it out of the integral: \[ M \int_{u}^{v} v \, dv \] ### Step 3: Integrate \( v \) Now we need to integrate \( v \): \[ \int v \, dv = \frac{v^2}{2} \] Thus, we can write: \[ M \int_{u}^{v} v \, dv = M \left[ \frac{v^2}{2} \right]_{u}^{v} \] ### Step 4: Evaluate the definite integral Now we evaluate the definite integral from \( u \) to \( v \): \[ M \left[ \frac{v^2}{2} - \frac{u^2}{2} \right] \] ### Step 5: Simplify the result This simplifies to: \[ M \left( \frac{v^2}{2} - \frac{u^2}{2} \right) = \frac{M}{2} (v^2 - u^2) \] ### Final Result Thus, the value of the integral \( \int_{u}^{v} M v \, dv \) is: \[ \frac{M}{2} (v^2 - u^2) \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u and v are in their lowest form. Find the value of ((1000)u)/(v) .

Find the value of (-8u^(2)v^(6)) xx(-20uv) for u = 2.5 and v = 1.

Find the value of (-8u^(2)v^(6))xx(-20uv) for u=2.5 and v=1

int_(1)^(2)((x^(2)-1)dx)/(x^(3)*sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u are ( in their blowest form.Find the value of )/(sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where of ((1000)u)/(v)

Let u=int_(0)^((pi)/(4))((cos x)/(sin x+cos x))^(2)dx and v=int_(0)^((pi)/(4))((sin x+cos x)/(cos x))^(2)dx Find the value of (v)/(u)

Let vec u and vec v be unit vectors such that vec u xxvec v+vec u=vec w and vec w xxvec u=vec v. Find the value of [vec uvec vvec w]

Let u=int_(0)^((pi)/(4))(cos^(2)x)/(1+sin2x)dx,v=int_(0)^((pi)/(8))(1)/((1+tan2x)^(2))dx then the value of (u)/(v) equals