Home
Class 11
PHYSICS
Evaluate int(r(1))^(r(2))(r- eta (q(0)q)...

Evaluate `int_(r_(1))^(r_(2))(r- eta (q_(0)q)/(r^(2)))dr`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{r_1}^{r_2} \left( r - \eta \frac{q_0 q}{r^2} \right) dr \] we can break it down into two separate integrals: \[ I = \int_{r_1}^{r_2} r \, dr - \eta q_0 q \int_{r_1}^{r_2} \frac{1}{r^2} \, dr \] ### Step 1: Evaluate the first integral \(\int_{r_1}^{r_2} r \, dr\) The integral of \(r\) is: \[ \int r \, dr = \frac{r^2}{2} \] Now we will evaluate this from \(r_1\) to \(r_2\): \[ \int_{r_1}^{r_2} r \, dr = \left[ \frac{r^2}{2} \right]_{r_1}^{r_2} = \frac{r_2^2}{2} - \frac{r_1^2}{2} = \frac{r_2^2 - r_1^2}{2} \] ### Step 2: Evaluate the second integral \(\int_{r_1}^{r_2} \frac{1}{r^2} \, dr\) The integral of \(\frac{1}{r^2}\) is: \[ \int \frac{1}{r^2} \, dr = -\frac{1}{r} \] Now we will evaluate this from \(r_1\) to \(r_2\): \[ \int_{r_1}^{r_2} \frac{1}{r^2} \, dr = \left[-\frac{1}{r}\right]_{r_1}^{r_2} = -\frac{1}{r_2} + \frac{1}{r_1} = \frac{1}{r_1} - \frac{1}{r_2} \] ### Step 3: Combine the results Now we can substitute the results of the two integrals back into our expression for \(I\): \[ I = \frac{r_2^2 - r_1^2}{2} - \eta q_0 q \left( \frac{1}{r_1} - \frac{1}{r_2} \right) \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{r_2^2 - r_1^2}{2} - \eta q_0 q \left( \frac{1}{r_1} - \frac{1}{r_2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals (i) int_(R)^(oo)(GMm)/(x^(2))dx (ii) int_(r_(1))^(r_(2))-k(q_(1)q_(2))/(x^(2))dx (iii) int_(u)^(v)Mvdv (iv) int_(0)^(oo)x^(-1//2)dx (v) int_(0)^(pi//2)sin x dx (vi) int_(0)^(pi//2)cos x dx (vii) int_(-pi//2)^(pi//2) cos x dx

Find the value if (p^(2)+q^(2))/(r^(2)+s^(2)) if p:q: : r:s

If (p)/(a) + (q)/(b) + (r )/(c )=1 " & " (a)/(p) + (b)/(q) + (c )/(r )=0 find (p^(2))/(a^(2)) + (q^(2))/(b^(2)) + (r^(2))/(c^(2)) = ?

The Bohr model for the H-atom relies on the Coulomb's law of electrostatics . Coulomb's law has not directly been varified for very short distances of the order of angstroms. Suppos-ing Coulomb's law between two oppsite charge +q_(1),-q_(2) is modified to |vec(F)|=(q_(1)q_(2))/((4piepsilon_(0))r^(2))1/r^(2),rgeR_(0) =(q_(1)q_(2))/((4piepsilon_(0))r^(2))1/R_(0)^(2)(R_(0)/r)^(epsilon), rleR_(0) Calculate in such a case , the ground state enenergy of H-atom , if epsilon 0.1,R_(0)=1Å

[" Two uniformly charged non "],[" conducting spheres of radii "R_(1)" and "],[R_(2)" having charges "Q_(1)" and "Q_(2)],[" respectively are seperated by "],[" distance "r" .Total electrostatic "],[" energy of this system is "],[qquad [U=(1)/(4 pi epsilon_(0)){(3Q_(1)^(2))/(5R_(1))+(3Q_(2)^(2))/(5R_(2))+(Q_(1)Q_(2))/(r)}],[U=(1)/(4 pi epsilon_(0)){(3Q_(1)^(2))/(5R_(1))+(3Q_(2)^(2))/(5R_(2))-(Q_(1)Q_(2))/(r)}],[U=(1)/(4 pi epsilon_(0)){(Q_(1)^(2))/(5R_(1))+(3Q_(2)^(2))/(5R_(2))-(Q_(1)Q_(2))/(r)}],[U=(1)/(4 pi epsilon_(0)){(3Q_(1)^(2))/(5R_(1))+(3Q_(2)^(2))/(R_(2))+(Q_(1)Q_(2))/(r)}]]

Prove that equations (q-r)x^(2)+(r-p)x+p-q=0 and (r-p)x^(2)+(p-q)x+q-r=0 have a common root.

The vector form of Coulomb's law is (A) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(|vec r|^(3))vec r (B) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(|vec r|^(3)) (C) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r^(2))vec r (D) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r)vec r

The vector form of Coulomb's law is (A) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(|vec r|^(3))vec r (B) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r^(3)) (C) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r^(2))vec r (D) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r)vec r

If p+q=1, then value of sum_(r=0)^(n)r^(2)C(n,r)p^(r)q^(n-r) is (1)npq(2)np(1+q) (3) n^(2)p^(2)+npq(4)np^(2)+npq

Find the value of (p^(2)+q^(2))/(r^(2)+s^(2)) , if p:q=r:s