Home
Class 11
PHYSICS
Find int(0)^(pi//2)(1-cos theta)^(1//2)d...

Find `int_(0)^(pi//2)(1-cos theta)^(1//2)d theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} (1 - \cos \theta)^{\frac{1}{2}} d\theta \), we can follow these steps: ### Step 1: Simplify the integrand We know that \( 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \) from the half-angle identity. Thus, we can rewrite the integrand: \[ (1 - \cos \theta)^{\frac{1}{2}} = \left(2 \sin^2\left(\frac{\theta}{2}\right)\right)^{\frac{1}{2}} = \sqrt{2} \sin\left(\frac{\theta}{2}\right) \] ### Step 2: Change the variable Let’s make a substitution to simplify the integral. Set \( u = \frac{\theta}{2} \), which means \( \theta = 2u \) and \( d\theta = 2 du \). The limits change accordingly: when \( \theta = 0 \), \( u = 0 \) and when \( \theta = \frac{\pi}{2} \), \( u = \frac{\pi}{4} \). Now, substituting into the integral gives: \[ I = \int_{0}^{\frac{\pi}{4}} \sqrt{2} \sin(u) \cdot 2 \, du = 2\sqrt{2} \int_{0}^{\frac{\pi}{4}} \sin(u) \, du \] ### Step 3: Evaluate the integral The integral of \( \sin(u) \) is \( -\cos(u) \). Thus, we can evaluate: \[ \int \sin(u) \, du = -\cos(u) \] Now, we evaluate this from \( 0 \) to \( \frac{\pi}{4} \): \[ \int_{0}^{\frac{\pi}{4}} \sin(u) \, du = -\cos\left(\frac{\pi}{4}\right) - (-\cos(0)) = -\frac{1}{\sqrt{2}} + 1 = 1 - \frac{1}{\sqrt{2}} \] ### Step 4: Substitute back into the integral Now substitute back into the expression for \( I \): \[ I = 2\sqrt{2} \left(1 - \frac{1}{\sqrt{2}}\right) = 2\sqrt{2} - 2 \] ### Final Result Thus, the value of the integral is: \[ I = 2\sqrt{2} - 2 \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//2)sin theta d theta

int_(0) ^(pi//2) cos^(2) theta d theta =

Evaluate the following : int_(-pi//2)^(pi//2) cos theta d theta

int_(0)^(pi//2) (cos theta)/(sqrt(4-sin^(2)theta))d theta is equal to

int_(0)^( pi/2) sin^(2)theta cos theta d theta

Evaluate: int_(0)^( pi/2)(cos theta)/((1+sin theta)(2+sin theta))dth eta

Evaluate: int_(0)^( pi/2)sqrt(cos theta)sin^(3)theta d theta

int_(0)^(pi//8) cos^(3)4 theta d theta=

Evaluate int_(0)^(pi//2) cosec theta tan ^(-1) (c sin theta)d theta .