Home
Class 11
PHYSICS
Evaluate int(0)^(oo)(dt)/(t)...

Evaluate `int_(0)^(oo)(dt)/(t)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\infty} \frac{dt}{t}, \] we need to analyze the behavior of the integrand \(\frac{1}{t}\) as \(t\) approaches the limits of integration. ### Step 1: Split the Integral The integral from \(0\) to \(\infty\) can be split into two parts: \[ I = \int_{0}^{1} \frac{dt}{t} + \int_{1}^{\infty} \frac{dt}{t}. \] ### Step 2: Evaluate the First Integral Now, we evaluate the first integral: \[ \int_{0}^{1} \frac{dt}{t}. \] This integral is improper because \(\frac{1}{t}\) approaches infinity as \(t\) approaches \(0\). We can evaluate it using a limit: \[ \int_{0}^{1} \frac{dt}{t} = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{1} \frac{dt}{t} = \lim_{\epsilon \to 0^+} [\ln(t)]_{\epsilon}^{1} = \lim_{\epsilon \to 0^+} (\ln(1) - \ln(\epsilon)). \] Since \(\ln(1) = 0\) and \(\ln(\epsilon) \to -\infty\) as \(\epsilon \to 0^+\), we have: \[ \int_{0}^{1} \frac{dt}{t} = -(-\infty) = \infty. \] ### Step 3: Evaluate the Second Integral Next, we evaluate the second integral: \[ \int_{1}^{\infty} \frac{dt}{t}. \] This integral is also improper, and we can evaluate it using a limit: \[ \int_{1}^{\infty} \frac{dt}{t} = \lim_{b \to \infty} \int_{1}^{b} \frac{dt}{t} = \lim_{b \to \infty} [\ln(t)]_{1}^{b} = \lim_{b \to \infty} (\ln(b) - \ln(1)). \] Again, since \(\ln(1) = 0\) and \(\ln(b) \to \infty\) as \(b \to \infty\), we have: \[ \int_{1}^{\infty} \frac{dt}{t} = \infty. \] ### Step 4: Combine the Results Since both integrals diverge to infinity, we conclude that: \[ I = \infty + \infty = \infty. \] Thus, the value of the integral is: \[ \int_{0}^{\infty} \frac{dt}{t} = \infty. \] ### Final Answer The integral diverges: \[ \int_{0}^{\infty} \frac{dt}{t} = \infty. \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

If int_(0)^(1)(e^(t)dt)/(t+1)=a, then evaluate int_(b-1)^(b)(e^(t)dt)/(t-b-1)

2int_(0)^(t)(1-cos t)/(t)dt

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

int_(0)^(9)[sqrt(t)]dt

If f(x)=int_(0)^(x)(dt)/((f(t))^(2)) and int_(0)^(2)(dt)/((f(t))^(2))=(6)^((1)/(3)) then