Home
Class 11
PHYSICS
Evalueta int(0)^(T)E(0)I(0)sin omega t...

Evalueta
`int_(0)^(T)E_(0)I_(0)sin omega t sin(omegat+phi)dt`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{T} E_0 I_0 \sin(\omega t) \sin(\omega t + \phi) \, dt, \] we can use the product-to-sum identities for sine functions. The identity states that: \[ \sin A \sin B = \frac{1}{2} \left[ \cos(A - B) - \cos(A + B) \right]. \] ### Step 1: Apply the product-to-sum identity Let \( A = \omega t \) and \( B = \omega t + \phi \). Then we have: \[ I = \int_{0}^{T} E_0 I_0 \cdot \frac{1}{2} \left[ \cos(\omega t - (\omega t + \phi)) - \cos(\omega t + (\omega t + \phi)) \right] dt. \] This simplifies to: \[ I = \frac{E_0 I_0}{2} \int_{0}^{T} \left[ \cos(-\phi) - \cos(2\omega t + \phi) \right] dt. \] ### Step 2: Simplify the integral Since \(\cos(-\phi) = \cos(\phi)\), we can rewrite the integral as: \[ I = \frac{E_0 I_0}{2} \left[ \cos(\phi) \int_{0}^{T} dt - \int_{0}^{T} \cos(2\omega t + \phi) dt \right]. \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{T} dt = T. \] ### Step 4: Evaluate the second integral For the second integral, we have: \[ \int_{0}^{T} \cos(2\omega t + \phi) dt. \] Using the substitution \( u = 2\omega t + \phi \), we find: \[ du = 2\omega dt \quad \Rightarrow \quad dt = \frac{du}{2\omega}. \] Changing the limits accordingly, when \( t = 0 \), \( u = \phi \) and when \( t = T \), \( u = 2\omega T + \phi \). Thus, we have: \[ \int_{\phi}^{2\omega T + \phi} \cos(u) \frac{du}{2\omega} = \frac{1}{2\omega} [\sin(u)]_{\phi}^{2\omega T + \phi}. \] This evaluates to: \[ \frac{1}{2\omega} \left[ \sin(2\omega T + \phi) - \sin(\phi) \right]. \] ### Step 5: Substitute back into the integral Now substituting back into our expression for \( I \): \[ I = \frac{E_0 I_0}{2} \left[ \cos(\phi) T - \frac{1}{2\omega} \left( \sin(2\omega T + \phi) - \sin(\phi) \right) \right]. \] ### Step 6: Substitute \( T = \frac{2\pi}{\omega} \) Now we substitute \( T = \frac{2\pi}{\omega} \): \[ I = \frac{E_0 I_0}{2} \left[ \cos(\phi) \frac{2\pi}{\omega} - \frac{1}{2\omega} \left( \sin(2\cdot 2\pi + \phi) - \sin(\phi) \right) \right]. \] Since \(\sin(2\cdot 2\pi + \phi) = \sin(\phi)\), the second term simplifies to zero: \[ I = \frac{E_0 I_0}{2} \left[ \cos(\phi) \frac{2\pi}{\omega} \right]. \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{E_0 I_0 \pi \cos(\phi)}{\omega}. \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evalueta int_(0)^(T)I_(0)sin omegat dt

Evalueta int_(0)^(T//2)I_(0)sin omegatdt Given that omegaT=2pi.

In any AC circuit the emf (e) and the current (i) at any instant are given respectively by e= E_(0)sin omega t i=I_(0) sin (omegat-phi) The average power in the circuit over one cycle of AC is

Two waves at a point are represented by E_(1)= E_(0) sin omega t and E_(2)=E_(0) sin ( omega + phi) . There will eb destructive interference at this point is

Three light waves combine at a certain point where thcir electric field components are E_(1) = E_(0) sin omega t , E_(2)= E_(0) sin(omega t +60^(@)) , E_(3)= E_(0) sin(omega t -30^(@)) . Find their resultant component E(t) at that point.

If i_(1) = i_(0) sin (omega t), i_(2) = i_(0_(2)) sin (omega t + phi) , then i_(3) =

The emf and current in a circuit are such that E = E_(0) sin omega t and I - I_(0) sin (omega t - theta) . This AC circuit contains

The power dissipated in alternating circuit with voltage e=e_(0) sin omegat and current I=I_(0)sin(omegat-phi) is