Home
Class 11
PHYSICS
Evalueta int(0)^(T//2)I(0)sin omegatdt...

Evalueta
`int_(0)^(T//2)I_(0)sin omegatdt`
Given that `omegaT=2pi.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_{0}^{\frac{T}{2}} I_0 \sin(\omega t) \, dt \] given that \(\omega T = 2\pi\), we can follow these steps: ### Step 1: Identify the limits of integration and constants The limits of integration are from \(0\) to \(\frac{T}{2}\). We know that \(\omega T = 2\pi\), which implies that \[ T = \frac{2\pi}{\omega}. \] Thus, \[ \frac{T}{2} = \frac{2\pi}{2\omega} = \frac{\pi}{\omega}. \] ### Step 2: Rewrite the integral Substituting the limits into the integral, we have: \[ \int_{0}^{\frac{\pi}{\omega}} I_0 \sin(\omega t) \, dt. \] ### Step 3: Factor out the constant Since \(I_0\) is a constant, we can factor it out of the integral: \[ I_0 \int_{0}^{\frac{\pi}{\omega}} \sin(\omega t) \, dt. \] ### Step 4: Perform the integration To integrate \(\sin(\omega t)\), we use the formula: \[ \int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C. \] Here, \(k = \omega\). Therefore, we have: \[ \int \sin(\omega t) \, dt = -\frac{1}{\omega} \cos(\omega t). \] ### Step 5: Evaluate the definite integral Now we evaluate the definite integral from \(0\) to \(\frac{\pi}{\omega}\): \[ I_0 \left[-\frac{1}{\omega} \cos(\omega t) \right]_{0}^{\frac{\pi}{\omega}}. \] Calculating the limits: 1. At \(t = \frac{\pi}{\omega}\): \[ -\frac{1}{\omega} \cos\left(\omega \cdot \frac{\pi}{\omega}\right) = -\frac{1}{\omega} \cos(\pi) = -\frac{1}{\omega} \cdot (-1) = \frac{1}{\omega}. \] 2. At \(t = 0\): \[ -\frac{1}{\omega} \cos(0) = -\frac{1}{\omega} \cdot 1 = -\frac{1}{\omega}. \] ### Step 6: Combine the results Now, substituting these values back into the integral: \[ I_0 \left(\frac{1}{\omega} - \left(-\frac{1}{\omega}\right)\right) = I_0 \left(\frac{1}{\omega} + \frac{1}{\omega}\right) = I_0 \cdot \frac{2}{\omega}. \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{T}{2}} I_0 \sin(\omega t) \, dt = \frac{2 I_0}{\omega}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

Evalueta int_(0)^(T)I_(0)sin omegat dt

int_(0)^( pi/2)sin xdx=

Evalueta int_(0)^(T)E_(0)I_(0)sin omega t sin(omegat+phi)dt

int_(0)^( pi/2)sin xdx

int_(0)^( pi/2)sin xdx

int_(0)^( pi/2)sin xdx

int_(0)^( pi/2)(sin x)*dx

int_(0)^( pi/2)x sin xdx

int_(0)^(2 pi)[sin t]dt

int_(0)^(2 pi)sin xdx=?