Home
Class 12
MATHS
If y = e^(x) * e^(x^(2)) *e^(x^(3) )*......

If `y = e^(x) * e^(x^(2)) *e^(x^(3) )*...*e^(x^(n))..., " for " - lt x lt 1 , " then" (dy)/(dx) ` at
` x = (1)/(2) ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^x.e^(x^2).e^(x^3)....e^(x^n)......... for 0 lt x lt 1 then (dy)/(dx) at x=1/2 is

Find (dy)/(dx) if y=e^(x)*e^(x^(2))*e^(x^(3))*e^(x^(4))

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)

If y = e ^(x + e ^(x + e^(x ...oo))), then (dy)/(dx)=

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y=e^(x).e^(2x).e^(3x)…..e^(nx) , then (dy)/(dx) =

If y=e^(x).e^(2x).e^(3x)…..e^(nx) , then (dy)/(dx) =

(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +e^(-3x)))

If y = e^(log_(e) [1 + x + x^(2) + …]) , then (dy)/(dx) =

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=