Home
Class 12
MATHS
Let a, b and c be positive real numbers....

Let a, b and c be positive real numbers. Then prove that `tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) = pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "tan"^(-1)sqrt((a(a+b+c))/(bc))+"tan"^(-1)sqrt((b(a+b+c))/(ca))+"tan"^(-1)sqrt((c(a+b+c))/(ab))=pi(a,b,c gt 0)

If a,b,c, are positive then tan^(-1)sqrt((a(a+b+c))/(bc))+tan^(-1)sqrt((b(a+b+c))/(ca))+ tan^(-1)sqrt((c(a+b+c))/(ab))=

If a,b,c be positive real numbers and the value of theta=tan^(-1)sqrt((a(a+b+c))/(bc))+tan^(-1)sqrt((b(a+b+c))/(ca))+tan^(-1)sqrt((c(a+b+a))/((ab))) then tan theta is equal to

If a,b,c be positive real numbers and the value of theta=tan^(- 1)sqrt((a(a+b+c))/(b c))+tan^(- 1)sqrt((b(a+b+c))/(c a)) + tan^-1sqrt((c(a+b+c))/((ab)) then tan theta is equal to

If a,b,c be positive real numbers and the value of theta=tan^(- 1)sqrt((a(a+b+c))/(b c))+tan^(- 1)sqrt((b(a+b+c))/(c a)) + tan^-1sqrt((c(a+b+a))/((ab)) then tan theta is equal to

If a , b , c >0 and s=(a+b+c)/2 , prove that tan^(-1)sqrt((2a s)/(b c))+tan^(-1)sqrt((2b s)/(c a))+tan^(-1)sqrt((2c s)/(a b))=pi

If a,b,c>0 and s=(a+b+c)/(2), prove thattan^(-1)sqrt((2as)/(bc))+tan^(-1)sqrt((2bs)/(ca))+tan^(-1)sqrt((2cs)/(ab))=pi