Home
Class 12
MATHS
If I=int (((sinx)^n-sinx^(1/n))/((sinx)...

If `I=int (((sinx)^n-sinx^(1/n))/((sinx)^(n+1) cosx)) dx` is eqaul to (a) `(n/(n^2-1))(1-1/(sinx^(n-1)))^(1/n+1)+c` (b) `(n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n+1)+c` (c) `(n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n)+c` (d) `(n/(n^2-1))(1-1/(sinx))^(1/n+1)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int ((((sinx)^n-sinx)^(1/n) cosx)/((sinx)^(n+1) )) dx is eqaul to (a) (n/(n^2-1))(1-1/(sinx^(n-1)))^(1/n+1)+c (b) (n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n+1)+c (c) (n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n)+c (d) (n/(n^2-1))(1-1/(sinx))^(1/n+1)+c

(1+ (C_1)/(C_0)) (1+(C_2)/(C_3) )....(1+(C_n)/(C_(n-1))) is equal to : a) (n+1)/(n!) b) ((n+1)^(n))/((n-1)!) c) ((n-1)^(n))/(n!) d) ((n+1)^(n))/(n!)

int((cosx)^(n-1))/((sinx)^(n+1))dx= (A) -cot^n x/n+c (B) -cot^n x/(n+1)+c (C) cot^n x/n+c (D) cot^n x/(n+1)+c

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int(sinx+cosx)^(n) dx, snd I_(n)=1/n(sinx+cosx)^(n-1)(sinx-cosx)+(2k)/(n) I_(n-2) then k=

If I_(n)=int(sinx+cosx)^(n) dx, snd I_(n)=1/n(sinx+cosx)^(n-1)(sinx-cosx)+(2k)/(n) I_(n-2) then k=