Home
Class 11
MATHS
The length of longer diagonal of the p...

The length of longer diagonal of the parallelogram constructed an `5bar(a)+2bar(b)` and `bar(a)-3bar(b)` as sides if it is given `|bar(a)|=2sqrt(2)`,`|bar(b)|=3` and `(bar(a),bar(b))=pi/4` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |bar(a)+bar(b)|<|bar(a)-bar(b)| then (bar(a),bar(b)) is

If |bar(a)|=3,|bar(b)|=4,|bar(a)-bar(b)|=5 then |bar(a)+bar(b)|=...

If |bar(a)| =2 and |bar(b)|=3 and bar(a).bar(b)=0 then |(bar(a)times(bar(a)times(bar(a)times(bar(a)timesbar(b)))))|-

If |bar(a)| = 2, |bar(b)| = 5, and bar(a).bar(b) = 8 then |bar(a) - bar(b)| =__________

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=

If |bar(a)|=3,|bar(b)|=4 and |bar(a)+bar(b)|=5, then |bar(a)-bar(b)| is equal to

A parallelogram is constructed on 2bar(a)+3bar(b) and 3bar(a)-5bar(b), where ।bar(a)|=4 and |bar(b)|=5. If the angle between bar(a) and bar(b) is (pi)/(3), then the magnitude of the smaller diagonal is

If |bar(a)|=|bar(b)|=|bar(c)|=2 and bar(a).bar(b)=bar(b).bar(c)=bar(c).bar(a)=2 then [bar(a) bar(b) bar(c)] equal to

bar(a),bar(b) are such that |bar(a)|=sqrt(3),|bar(b)|=2 and (bar(a),bar(b))=(pi)/(3). Then the area of the triangle with adjacent sides bar(a)+2bar(b) and 2bar(a)+bar(b) is

bar(a),bar(b) are such that |bar(a)|=sqrt(3),|bar(b)|=2 and (bar(a),bar(b))=(pi)/(2). Then the area of the triangle with adjacent sides bar(a)+2bar(b) and 2bar(a)+bar(b) is