Home
Class 12
MATHS
Let bar(OA)=bar(i)+2bar(j)+2bar(k) .In t...

Let `bar(OA)=bar(i)+2bar(j)+2bar(k)` .In the plane `bar(OA)` and `bar(i)` rotate `bar(OA)` through `90^(@)` about the origin O such that the new position of `bar(OA)` can be
(A) `(4bar(i)-bar(j)-bar(k))/(sqrt(2))`
(B) `(4bar(i)+2bar(j)+2bar(k))/(sqrt(2))`
(C) `2bar(j)-2bar(k)`
(D) `6bar(i)-3bar(k)`

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))

A point on the line bar(r)=(1-t)(2bar(i)+3bar(j)+4bar(k))+t(3bar(i)-2bar(j)+2bar(k))

If bar(a)=bar(i)+bar(j)-2bar(k) then sum[(bar(a)xxbar(i))xxvec j]^(2)=

bar(a)=2bar(i)+3bar(j)-4bar(k),bar(b)=bar(i)+bar(j)+bar(k),bar(c)=4bar(i)+2bar(j)+3bar(k) then |bar(a)xx(bar(b)xxbar(c))|=

bar(a)=2bar(i)+bar(i)+bar(k),bar(b)=bar(i)+2bar(j)+2bar(k),bar(c)=bar(i)+bar(j)+2bar(k) and bar(a)xx(bar(b)xxbar(c))=

If bar(a)=bar(i)+bar(j)-bar(2)k then sum[(bar(a)xxbar(i))xxvec j]^(2)=

The lines bar(r)=bar(i)+bar(j)-bar(k)+s(3bar(i)-bar(j)) and bar(r)=4bar(i)-bar(k)+t(2bar(i)+3bar(k))

The vectors bar(i)+4bar(j)+6bar(k),2bar(i)+4bar(j)+3bar(k) and bar(i)+2bar(j)+3bar(k) form

The shortest distance the two lines bar(r)=2bar(i)-bar(j)-bar(k)+lambda(2bar(i)+bar(j)+2bar(k)) and bar(r)=(bar(i)+2bar(j)+bar(k))+mu(bar(i)-bar(j)+bar(k)) is

For any vector bar(r) , (bar(r)*bar(i))bar(i)+(bar(r)*bar(j))bar(j)+(bar(r)*bar(k))bar(k)=