Home
Class 12
MATHS
bar(a) and bar(b) are two unit vectors a...

`bar(a) and bar(b)` are two unit vectors and `theta` be the angle between them then sin `theta/2` :
(A) `|bar(a)-bar(b)|` (B) `|bar(a)+bar(b)|` (C) `(1)/(2)|bar(a)-bar(b)|` (D)`(1)/(2)|bar(a)+bar(b)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a and be two unit vectors and theta be the angle between them then |bar(a)+bar(b)|^(2)-|bar(a)-bar(b)|^(2)=

If |bar(a)|=2,|bar(b)|=4 then (|bar(a)xxbar(b)|^(2))/(1-cos^(2)(bar(a),bar(b)))=

if |bar(a)|=2,|bar(b)|=4 then (|bar(a)xxbar(b)|^(2))/(1-cos^(2)(bar(a),bar(b)))=

If |bar(a)+bar(b)|<|bar(a)-bar(b)| then (bar(a),bar(b)) is

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=

(bar(a)-bar(d))*(bar(b)-bar(c))+(bar(b)-bar(d))*(bar(c)-bar(a))+(bar(c)-bar(d))*(bar(a)-bar(b))=

(bar(a)+bar(b))xx(bar(a)-bar(b))+(bar(b)-bar(c))xx(bar(b)-bar(c))+(bar(c)+bar(a))(bar(c)-bar(a))=

If bar(a) and bar(b) are unit vectors such that [bar(a),bar(b),bar(a)xxbar(b)] is 1/4, then angle between bar(a) and bar(b) is

(bar(a)+bar(b))xx(bar(a)-bar(b))+(bar(b)+bar(c))xx(bar(b)-bar(c))+(bar(c)+bar(a))xx(bar(c)-bar(a))=