Home
Class 12
MATHS
In a parallelogram ABCD, |bar(AB)|=a,|ba...

In a parallelogram ABCD, `|bar(AB)|=a,|bar(AD)|=b and |bar(AC)|=c,` then `bar(DB).bar(AB)` has the value:
(A) `(3a^(2)+b^(2)-c^(2))/(2)`
(B) `(a^(2)+3b^(2)-c^(2))/(2)`
(c) `(a^(2)-b^(2)+3c^(2))/(2)`
(D) `(a^(2)+3b^(2)+c^(2))/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is the angle between unit vectors bar(A) and bar(B) then (1-bar(A).bar(B))/(1+bar(A)*bar(B)) is equal to (A) tan^(2)((theta)/(2)) (B) sin^(2)((theta)/(2)) (C) cot^(2)((theta)/(2)) (D) cos^(2)((theta)/(2))

If bar(c)=3bar(a)-2bar(b) , then prove that [bar(a)bar(b)bar(c)]=0 .

If |bar(a)| =2 and |bar(b)|=3 and bar(a) .bar(b)=0 then |(bar(a)times(bar(a)times(bar(a)times(bar(a)timesbar(b)))))| (A) 16 (B) 32 (C) 48 (D) 0

If |bar(a)|=|bar(b)|=|bar(c)|=2 , and bar(a)*bar(b)=bar(b).bar(c)=bar(c)*bar(a)=2 then [bar(a) bar(b) bar(c)] = (1). 3sqrt(2) (2). 4sqrt(2) (3).32 (4).48

If |bar(a)|=|bar(b)|=|bar(c)|=2 and bar(a).bar(b)=bar(b).bar(c)=bar(c).bar(a)=2 then [bar(a) bar(b) bar(c)] equal to

If bar(c) = 3 bar(a) - 2 bar(b) then prove that [(bar(a),bar(b),bar(c))] = 0

If bar(a) is a perpendicular to bar(b) and bar(c), |bar(a)|=2, |bar(b)|=3, |bar(c)|=4 and the angle between bar(b) and bar(c) is (2pi)/(3) then |[bar(a) bar(b) bar(c)]| =

If angle between bar(a) and bar( b) is (pi)/(3) then angle. Between 2bar( a) and -3bar(b) is. (A) (pi)/(3) (B) (2 pi)/(3) (C) (pi)/(6) (D) (5 pi)/(3)

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [bar(a)bar(b)bar(c)] is

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [[bar(a),bar(b),bar(c)]] is