Home
Class 11
MATHS
For any vector bar(a) ,the vector (bar(a...

For any vector `bar(a)` ,the vector `(bar(a)timesbar(i))^(2)+(bar(a)timesbar(j))^(2)+(bar(a)timesbar(k))^(2)` is equal to
A) `3|bar(a)|^(2)` B) `|bar(a)|^(2)` C) `2|bar(a)|^(2)` D) `4|bar(a)|^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

The angle between (bar(A)timesbar(B))) and (bar(B)timesbar(A)) is (in radian)

If a and b are unit vectors such that |bar(a)timesbar(b)|=bar(a)*bar(b) then |bar(a)-bar(b)|^(2)=

The point of intersection of the lines bar(r)timesbar(a)=bar(b)timesbar(a) and bar(r)timesbar(b)=bar(a)timesbar(b) is 1. bar(a)-bar(b) 2. bar(a)+bar(b) 3. 2bar(a)+3bar(b) 4. 3bar(a)-2bar(b)

If |bar(a)|=4,|bar(b)|=2 and the angle between bar(a) and bar(b) is pi/6 ,then (bar(a)timesbar(b))^(2) is equal to

If |bar(a)|=4,|bar(b)|=2 and the angle between bar(a) and bar(b) is pi/6 ,then (|bar(a)timesbar(b)|)^(2) is equal to

bar(a),bar(b),bar(c) are vectors such that [bar(a)bar(b)bar(c)]=4 then [bar(a)timesbar(b) bar(b)timesbar(c) bar(c)timesbar(a)] is (A) 16 (B) 64 (C) 4 (D)8

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=