Home
Class 11
MATHS
The vector bar(c) is perpendicular to b...

The vector `bar(c)` is perpendicular to both `bar(a)=(bar(i)-2bar(j)+bar(k)),bar(b)=(2bar(i)+bar(j)-bar(k)),bar(c)` also satisfies ,`|bar(c)times(bar(i)-bar(j)+bar(k))|=2sqrt(6)` then `bar(c)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))

bar(a)=2bar(i)+3bar(j)-4bar(k),bar(b)=bar(i)+bar(j)+bar(k),bar(c)=4bar(i)+2bar(j)+3bar(k) then |bar(a)xx(bar(b)xxbar(c))|=

The unit vector perpendicular to both of the vectors 2bar(i)-bar(j)+bar(k) and 3bar(i)+4bar(j)-bar(k) is.

bar(a)=2bar(i)+bar(i)+bar(k),bar(b)=bar(i)+2bar(j)+2bar(k),bar(c)=bar(i)+bar(j)+2bar(k) and bar(a)xx(bar(b)xxbar(c))=

The reciprocal of bar(a) where bar(a)=-bar(i)+bar(j)+bar(k),bar(b)=bar(i)-bar(j)+bar(k),bar(c)=bar(i)+bar(j)+bar(k) is

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

The distance between the line bar(r)=2bar(i)-2bar(j)+3bar(k)+lambda((bar(i)-bar(j)+4bar(k)) and the plane bar(r).(bar(i)+5bar(j)+bar(k))=5 is

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

A point on the line bar(r)=(1-t)(2bar(i)+3bar(j)+4bar(k))+t(3bar(i)-2bar(j)+2bar(k))