Home
Class 12
MATHS
Let f (x+y)=f(x). f(y) for all x and y f...

Let `f (x+y)=f(x). f(y)` for all x and y `f(1)=2` If in a triangle `ABC, a =f (3),b=f(1)+f (3), c=f (2)+f (3), `

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x).f(y) for all x and y and f(1)=2. If in as triangle ABC, a=f(3), b=f(1)+f(3), c=f(2)+f(3), then 2A= (A) C (B) 2C (C) 3C (D) 4C

Let f(x+2y)=f(x)(f(y))^(2) for all x,y and f(0)=1. If f is derivable at x=0 then f'(x)=

f(x+y)=f(x)*f(y) for all x,y anf f(5)=2,f'(0)=3 then f(5) will be

If f(x+y) = f(x) * f(y) for all real x and y and f(5)=2,f'(0) = 3 , find f'(5).

If f(x+y)=f(x)f(y) for all x and y if f(1)=2, then area enclosed by 3absx+2absyle8 is

f(x+y)=f(x).f(y) for all x,yinR and f(5)=2,f'(0)=3 then f'(5) is equal to