Home
Class 12
MATHS
If f(x) =(sin (e^(x-2)-))/(log(x-1)) the...

If `f(x) =(sin (e^(x-2)-))/(log(x-1))` then `lim_(xrarr2)f(x)` is given by

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (sin (e^(x-2) - 1))/(log (x - 1)) , then lim_(x rarr 2) f(x) is given by :

If f(x) =x(e^([x]+|x|)-2)/([x]+|x|) , then lim_(xrarr0)f(x) is.

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

lim_(xrarr2)(x^3-8)/(sin(x-2))

If f(x)={(x-absx,x 2):} Find lim_(xrarr2)f(x)

If lim_(xrarr0)(f(x))/(x^2)=k ne 0 then lim_(xrarr1)f(x) =……….

If f(3)=2 then lim_(xrarr2)f(x^2-1) = …........

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is