Home
Class 11
MATHS
logx(1/(512))=-3...

`log_x(1/(512))=-3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

log_(2)512=……….

Solve log_((1)/(3))(x-1)>log_((1)/(3))4 .

(512)^(1/3) =

Q.Evaluate the determinant Delta=|(log_(3)512log_(4)3),log_(3)8log_(4)9)|

Let x=(anti log_2 3)*log_3 2, y=log_2(log_3 512))"and"z=log_5 3*log_7 5*log_2 7, then xyz is equal to

The value of "log"_(sqrt(2)^(512)) is

log_(2sqrt2)512=?

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2