Home
Class 11
MATHS
The vertices of a triangle ABC are (lamb...

The vertices of a triangle ABC are `(lambda,2-2lambda), (-lambda + 1, 2lambda)` and `(-4-lambda, 6-2lambda)`. If its area be `70 `units then number of integral values of `lambda` is `(a) 1 (b) 2 (c) 4 (d) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

The vertices of a triangle ABC are (lambda,2-2 lambda)(-lambda+1,2 lambda) and (-4-lambda,6-2 lambda). If its area be 70 units then number of integral values of lambda is

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

if points (2lambda, 2lambda+2) , (3, 2lambda + 1) And (1,lambda + 1) are linear, then lambda find the value of

In a triangle ABC , if a^(2)-b^(2)-c^(2)=bc(lambda^(2)-2lambda-1) , then

A=[[1,4, of matrix 1,8,8 lambda-6lambda,8,8 lambda-61+lambda^(2),8 lambda+4,2 lambda+21]]