Home
Class 12
MATHS
" 11.Prove that "sin^(-1)x=tan^(-1)((x)/...

" 11.Prove that "sin^(-1)x=tan^(-1)((x)/(sqrt(1-x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that derivative of tan^(-1)((x)/(1+sqrt(1-x^(2))))" w.r.t. "sin^(-1)x is independent of x.

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that: sin cos^-1 tan sec^-1 x= sqrt(2-x^2)

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

prove that tan^(-1)((x)/(1+sqrt(1-x^(2)))]=(1)/(2)sin^(-1)x

Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1)((sqrt(a^(2)-x^(2)))/(a)) .

Prove that sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((x+1)/(sqrt(x^(2)+2x+2)))=tan^(-1)(x^(2)+x+1)

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)