Home
Class 12
MATHS
y^(k)=e^(yx)" then prove that "(dy)/(dx)...

y^(k)=e^(yx)" then prove that "(dy)/(dx)=((1+log y)^(2))/(log y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

Differentiate the following w.r.t.x. If y^x = e^(y - x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y)

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))