Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `(1+x^2)(dy)/(dx)+1+y^2=0,` is a. `tan^(-1)x-tan^(-1)y=tan^(-1)C` b. `tan^(-1)y-tan^(-1)x=tan^(-1)C` c. `tan^(-1)y+-tan^(-1)x=tan^(\ )C` d.`tan^(-1)y+tan^(-1)x=tan^(-1)C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (1+x^(2))(dy)/(dx)+1+y^(2)=0, is tan^(-1)x-tan^(-1)y=tan^(-1)Ctan^(-1)y-tan^(-1)x=tan^(-1)Ctan^(-1)y=tan^(-1)x=tan Ctan^(-1)y-tan^(-1)x=tan^(-1)C

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

Solution of differential equation (x^(2)+1)^(2)(dy)/(dx)+2x(x^(2)+1)y=1 is (A) y=(tan^(-1))/(x^(2)+1)+C( B) y=tan^(-1)x+C(C)y(x^(2)+1)=tan^(-1)x+C(D)y(tan^(-1)x)=x^(2)+C

The solution of differential equation (1+y^2)+((x-2e^tan^((-1)y))dy)/(dx)=0 is (x-2)=k e^tan^((-1)y) x e^t a n-1y=e^2tan^((-4)y)+k x e^tan^((-1)y)=tan^(-1)y+k x e^2tan^((-1)y)=e^2tan^((-1)y)+k

The solution of differential equation (1+y^(2))+((x-2e^(tan^(-1)y))dy)/(dx)=0 is (x-2)=ke^(tan^(-1)y)xe^(tan-1)y=e^(2)tan^(-4)y+kxe^(tan^(-1)y)=tan^(-1)y+kxe^(2tan^(-1)y)=e^(2tan^(-1)y)+k

The solution of the differential equation (dy)/(dx)=(x^2+x y+y^2)/(x^2), is a.) tan^(-1)(x/y)=logy+C b.) tan^(-1)(y/x)=logx+C c.) tan^(-1)(x/y)=logx+C d.) tan^(-1)(y/x)=logy+C

The solution of the differential equation (1+y^2)+(xe^(tan^-1)y) (dy)/(dx)=0, is (1) (x-2)=ke^(tan^) -1y) (2) 2xe^(2tan^-1y) =e^(2tan^-1y)+k (3) xe^(tan^-1y)=tan^-1y+k (4) xe^(2tan ^-1y)=e^(tan^-1y)+k